3x 2 X 2 1 Written By Scruggs Whork1977 Friday, September 30, 2022 Add Comment Edit Dr.Dipin Singh 8 years Ago (ten-i)(x-ii)(3x-2)(3x+1) = 21 (ten-i)*(3x-2)(3x+ane)*(10-two) = 21 (3x^ii-5x+two)(3x^2-5x-2)=21 put 3x^2-5x=y (y+two)*(y-2)=21 y^ii=25 y= +-5 put y= 3x^2-5x=5 3x^2-5x-v=0 and then x= (5+Sqrt 85)/half dozen, (5-Sqrt 85)/half-dozen ... selection 7 Similar?Yes (17) | No (3) Ann Theressa eight years Ago (x-1)(x-2)(3x-ii)(3x+1) = 21 (x-ane)(3x-2)(x-2)(3x+i) = 21 (3x^2-5x+2)(3x^2-5x-two) = 21 put 3x^2 - 5x = y (y+2)(y-2) = 21 y^two - iv = 21 y^2 = 25 y = (+-)5 3x^two - 5x = 5 3x^2 - 5x -5 = 0 ten = {5(+-)sqrt(25+threescore)}/6 =(5+Sqrt 85)/half-dozen, (5-Sqrt 85)/6 Like?Yeah (12) | No (5) Dada Khalandar eight years AGO (x-1)(x-2)(3x-2)(3x+1) = 21 9x^four - 30x^3 + 25x^ii - iv = 21 9x^4 - 30x^3 + 25x^2 = 25 (3x^2 - 5x)^2 = 25 3x^2 - 5x - 5 = 0 or 3x^2 - 5x + 5 = 0 x = (v ± √85) / half-dozen or x = (5 ± i√35) / vi Like?Yes (vii) | No (2) MD SOHAIL AKHTER 8 years AGO (ten-1)(x-2)(3x-2)(3x+ane) = 21 (3x^2-5x+2)(3x^ii-5x-2)= 21 (3x^2-5x)^2= 25 (3x^ii-5x)^ii-5^ii=0 (3x^2-5x-5)(3x^2-5x+5)=0 on solving, we get ten=(five+Sqrt 85)/6, (5-Sqrt 85)/half dozen o choice (7) is correct Like?Yes (v) | No (iii) Udhaya kumar viii years Ago (x-1)(3x-two)(x-two)(3x+1)=21 by solving 3x^2-5x-five=0 ten=5+sqrt85/6 Like?Yes (4) | No (3) subasini matheswaran viii years AGO 9x^4 - 30x^3 + 25x^2 - 4 = 21 9x^four - 30x^3 + 25x^2 = 25 (3x^ii - 5x)^2 = 25 3x^2 - 5x - 5 = 0 or 3x^2 - 5x + 5 = 0 x = (5 - √85) / 6 , 10 = (five- srqt 85) / 6 Similar?Yes (2) | No (one) Bhagyashree Bhatt 8 years Ago offset expand: (x - 1)(x - 2)(3x - 2)(3x + 1) = 21 (10² - 3x + ii)(9x² - 3x - 2) = 21 (9x^4 - 3x³ - 2x²) + (-27x³ + 9x² + 6x) + (18x² - 6x - 4) = 21 9x^4 - 30x³ + 25x² + 0x - iv = 21 take out common factor x² and movement constant to RHS: x²(9x² - 30x + 25) = 25 the chip in parentheses is a square: x²(3x - 5)² = 25 take square root of both sides: x(3x - 5) = 5 rearrange: 3x² - 5x - 5 = 0 sub these numbers into the equation to solve for roots of quadratic: x = (-b ± sqrt(b² - 4ac))/(2a) = (5 ± sqrt(25 - (iv*3*-5))/(2*3) = (5 ± sqrt(25 - (-60))/6 = (v ± sqrt(85))/half-dozen Like?Yep (2) | No (two) sanghavi 8 years AGO 9x^4-30x^3+25x^ii=25 x^2(3x-v)^2=25 ten(3x-five)=5 3x^2-5x-5=0 by solving this equation we become option 7 Similar?Yes (1) | No (two) AMIT SINGH eight years Agone (10-1)(3x-two)(x-2)(3x+ane)=21 (3x^2-5x+2)(3x^2-5x-2)=seven*iii on equating 3x^2-5x+2=7 and 3x^2-5x-2=iii we have, 3x^ii-5x-5=0 hence, on solving ten=(5+sqrt85)/6,(five-sqrt85)/6. Like?Yes (2) | No (3) sruthi eight years AGO 7 th one is the reply Like?Yep (one) | No (two) Sushma 8 years AGO Regroup the factors. put 3x^2-5x=y solve new quadratic eqn to get y= +-5. solve 3x^2-5x=y=v to become the upshot. Like?Yes (two) | No (3) srilakshmi 8 years Agone (x-1)(10-2)(3x-two)(3x+one) = 21 (ten-1)(3x-2)(x-2)(3x+1) = 21 (3x^2-5x+2)(3x^2-5x-2) = 21 let us assume 3x^ii-5x = x past solving the above we will become 3x^2-5x-5= 0 roots are -b+(or)-Sqrt(b^2-4ac)/2a (five+Sqrt 85)/half dozen,(5-Sqrt 85)/half-dozen Like?Yep (ane) | No (3) T.Aravinth kumar 8 years AGO Sub options in equation Similar?Yes (1) | No (three) deepak kumar 8 years Ago normal calculation by quadratic equation. Similar?Yes (1) | No (3) rajani 8 years AGO (x-1)(3x-2)(x-2)(3x+ane)=21 ->(3x^2-5x+2)(3x^two-5x-two)=21 allow 3x^2-5x be 'a' (a+2)(a-two)=21 a^2-4=21 ->a^2=25 ->a=+5 or -5 Past taking the root every bit -5, eq is 3x^2-5x=-5 on solving this nosotros get (v+sqrt85)/half dozen and (5-sqrt 85)/6 Like?Yes (1) | No (four) Gitanjali 1000 8 years Ago (10 - ane)(x - ii)(3x - 2)(3x + 1) = 21 (ten^two - 3x + 2)(9x^ii - 3x - 2) = 21 9x^iv - 30x^iii + 25x^two - 4 = 21 9x^four - 30x^iii + 25x^2 = 25 10^2(9x^2 - 30x + 25) = 25 10^2(3x - 5)^ii = 25 accept square root of both sides: x(3x - v) = v 3x^two - 5x - 5 = 0 solve quadratic equation using x = (-b (+/-) sqrt(b^2 - 4ac))/(2a) = (five (+/-) sqrt(25 - (-60))/half dozen = (5 (+/-) sqrt(85))/vi therefore x=(5+Sqrt 85)/half-dozen, x=(five-Sqrt 85)/6 so option (seven) is the answer Like?Yep (1) | No (four) Anupam Banerjee 8 years AGO (10-1)(x-ii)(3x-2)(3x+1)=21 or, (ten-one)(3x-ii)(x-2)(3x+1)=21 or, (3x^ii -5x +2)(3x^2 -5x -2)=21 Let, 3x^two-5x=z; Then, (z+2)(z-2)=21 or, z^2 - 4=21 or, z=five; So, 3x^ii - 5x = 5 or, 3x^2 - 5x - 5=0 or, x=(5+Sqrt(25+sixty))/6, ten=(5-Sqrt(25+lx))/6; Like?Aye (1) | No (4) 3x 2 X 2 1, Source: https://m4maths.com/previous-puzzles-1304-Solve-x-1-x-2-3x-2-3x-1-21.html Posted by: evanstruits.blogspot.com Share this post
0 Response to "3x 2 X 2 1"
Post a Comment